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Abstract

In this paper a compactness framework for approximate solutions to nonlin-

ear hyperbolic systems with umbilic points is established by combining ideas in

modern nonlinear analysis with classical methods, and by a detailed analysis of

a highly singular Euler-Poisson-Darboux-type equation. Then this framework is

successfully applied to prove the convergence of the Lax-Friedrichs scheme, the

Godunov scheme and the viscosity method, and the existence of global entropy

solutions for the Cauchy problem with large initial data for a canonical class of

the quadratic flux systems and other related systems. In forthcoming papers

[CK1, CK2], we apply (a variant of) this framework to solve the other three

canonical classes of the quadratic flux systems, the system of three-phase flow

in porous media and other related systems with umbilic points.
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1. Introduction

We are concerned with hyperbolic systems of conservation laws with umbilic

points. A point in state space Uo E R' is called an umbilic point for a system

of hyperbolic conservation laws

(1.1) OtU + eF(U) = 0, U E Rn,

if some wave speeds coincide at this point U0 , that is, at least two eigenvalues

.X(U) and Ai(U),i : j, among the n real eigenvalues of the matrix VF(U) are

such that Ai(U 0 ) = Aj(Uo). Such umbilic points allow a degree of interaction,

or nonlinear resonance, between distinct modes, and lead to high singularities,

which is missing in the strictly hyperbolic case.

The study of singular hyperbolic equations has an extensive history dating

back at least to the work of Euler [Eu] two hundred years ago, when he proposed

a singular equation - the Euler-Poisson-Darboux equation. Its close relations

with wave theory, fluid dynamics as well as geometry have attracted great atten-

tions from mathematicians for two centuries including Poisson (1823), Darboux

(1914), Riemann (1860), Volterra (1892), Beltrami (1880) and also Weinstein,

Erdlyi, Lions and others in ,he 60's (see [YI). Recently, a study of the behavior

of its solutions led to a solution of the nonlinear system of isentropic gas dynam-

ics [Chl, DCL] (also see [Di2, Ch2]) because of its close relation with entropy

information. On the other hand, the theory of linear equations with multiple

characteristics is also well developed. An important feature of such equations is

the loss of differentiability [DeG], which leads to ill-posedness in Sobolev spaces

and to the use of Gevrey Classes [Ge]. Another feature is that sign conditions

on the subprincipal symbol play an important role (cf. [Fr, Oh, H]).

Recently, nonlinear hyperbolic systems with umbilic points have arisen from

such areas as multiphase flows in porous media, elasticity, water wave problems,

and maganetohydrodynamics. Such umbilic points appear naturally in multi-

dimensional systems of conservation laws. In particular, Lax showed that in

three space variables there must be umbilic points if the number of equations

is 2(mod 4) [Lal]. The theory of local solutions for such systems is well devel-

oped because many tools for linear equations still can be used. However, since
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such systems are nonlinear, even if the initial data are smooth, the solutions of
the Cauchy problem generally develop singularities and become discontinuous in
finite time. This is an exact reflection of the physical phenomena of the break-

ing of waves and the development of shock waves. An effort has been made to
understand the Riemann solutions for such systems (cf. [GI, IMPT, IT, SS2,

SSMP]). Two kinds of degeneracy are classified, which govern different behavior
of solutions near umbilic points. A typical example of parabolic degeneracy is

the system of isentropic gas dynamics (cf. [Ch2]). The most simple example

of hyperbolic degeneracy is the system with a rotational symmetry, one linear
degenerate characteristic field, and one contact characteristic field (cf. [KK, LW,

F, Ch3J).

This is the first in a series of our papers. In this series of papers we focus
on isolated umbilic points with hyperbolic degeneracy. Near such an isolated
umbilic point one can scale and blow up singularity to yield generically a homo-
geneous polynomial flux, determined by the lowest-order nontrivial terms, by a

Galilean transformation. For the 2 x 2 case, this process generically leads to a

homogeneous quadratic polynomial flux. Such a polynomial flux contains some
inessential scaling parameters and the selection of a unique flux from each equiv-

alence class is the problem of normal forms. It was solved by Issacson, Plohr,
and Temple and in a more satisfactory form by Schaeffer and Shearer [SS1]. The

classification of the geometry of rarefaction curves and some preliminary tools

for the analysis of Riemann problems for the quadratic flux systems are also pre-
sented in [SS1]. The Riemann solutions for such systems were constructed by

Issacson, Marchesin, Paes-Leme, Plohr, Schaeffer, Shearer, Temple and others
(cf. [IMPT, IT, SS2, SSMP]).

The global existence of weak solutions to the Cauchy problem for a special
case of such quadratic flux systems was solved in [K] using the viscosity method.

The method of compensated compactness was used and the main analysis in-

volves detailed estimates and characterization of the singularities of solutions to
the associated entropy equation which is of Euler-Poisson-Darboux type. Classes C
of Goursat data were then carefully chosen to cancel these singularities in the C
construction of general classes of regular entropies. In [Rb], the analysis in [K]
was applied to a slightly different system. And in [Lu], a different proof was

c. y Codes

Dit AAvail and IorDTIC QUALITY INSPECTED 8 6s Special

IA-1 1-
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given independently to the same problem studied in [K].

In this first paper of this series, we establish an L' compactness framework

for sequences of approximate solutions to general nonstrictly hyperbolic systems

with umbilic points. Some techniques in compensated compactness [Ta, Mu, Se]

are used and the analysis of singularities in [K] is generalized to achieve this

framework. Under this framework approximate solution sequences, which are

apriori bounded in L' and which produce correct entropy dissipations, lead to

the compactness of the corresponding Riemann invariant sequences. In another

series of papers, we are going to develop the corresponding LP theory. One

of the principal difficulties associated with such systems is the general lack of

enough classes of entropy functions that can be verified to satisfy certain weak

compactness conditions in the div-curl lemma of Tartar [Ta] and Murat [Mu].

This is due to possible singularities of entropy functions near the regions of

nonstrictly hyperbolicity. The analysis leading to the compactness involves two

major steps:

In the first step, we construct regular entropy functions governed by a highly

singular entropy equation. There are two main difficulties. The first is that, in

general, the coefficients of the entropy equation are multiple-valued functions

near the umbilic points in the Riemann invariant coordinates, which is missing

in the special cases [K, Rb]. This difficulty is overcome by a detailed analysis of

the singularities of the Riemann function of the entropy equation in Section 3

and Section 4. This analysis involves a study of a corresponding Euler-Poisson-

Darboux equation using a majorant idea and requires very complicated estimates

and calculations. Finally, an appropriate choice of Goursat data leads to a

cancellation of singularities and we obtain regular entropies in the Riemann

invariant coordinates. The second difficulty is that the nonlinear correspondence

between the U-coordinates and the Riemann invariant coordinates is, in general,

irregular. A regular entropy function in the Riemann invariant coordinates is

usually no longer regular in the physical coordinates U. We overcome this by a

detailed analysis of the correspondence between these two coordinates.

In the second step, we study the structure of the Young measures associ-
ated with the approximate sequences, and prove that the support of the Young

I I mll Inimm ili m = m mm, = =m =m.. m.
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measures lies in finite isolated points or separate lines in the Riemann invariant

space. This is achieved by a delicate use of Serre's technique [Sel and regular

entropy functions, constructed in the first step, in the Tartar-Murat commuta-

tion equation [Tal for Young measures associated with the approximate solution

sequences.

This compactness framework is successfully applied to prove the conver-

gence of the Lax-Friedrichs scheme [La3], the Godunov scheme [Go] and the

viscosity method for a canonical class of the quadratic flux systems and other

related systems in Section 7. Corresponding existence theorems of global en-

tropy solutions for such systems are established. The compactness is achieved

by reducing the support of the corresponding Young measures to a Dirac mass

in the physical space. This involves a careful construction of many other special

solutions to the nonstrictly hyperbolic entropy equations and a detailed analysis

of finite Tartar-Murat functional equations.

In the forthcoming second paper [CK1] we will apply this framework to

solve the other three remaining canonical classes of quadratic flx systems and

related systems. Several convergence theorems of L' approximate solutions and

existence theorems of global solutions will be presented.

In the third paper of this series [CK2J, we will solve the system of three-

phase incompressible flows in porous media, studied by many authors, with the

aid of a variant of this framework. By a detailed analysis of the geometry of

wave curves and the dissipation of entropy waves we obtain the convergence of

approximate solutions (such as the Lax-Friedrichs scheme, the Godunov scheme,

and the viscosity method) and the existence of global entropy solutions for the

Cauchy problem with large initial data for this physical system.

In connection with earlier work on compactness frameworks on approximate

solutions to strictly hyperbolic conservation laws we refer the reader to the work

of Tartar [Ta] for scalar conservation laws, and to the work of DiPerna [Dil] and

Serre [Se] for 2 x 2 systems. DiPerna's analysis [Dil] is based on a study of

the Lax progressing entropy waves in state space [Lal], and in particular, on

relationships between their structure and the structure of the Young measures

by using the strict hyperbolicity and the convexity of the systems. Serre [Se]
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provided another approach to establish such a compactness framework for gen-

eral systems by using certain kinds of Goursat entropies whose regularities are

ensured by the strict hyperbolicity of the systems.

Regarding work on other related topics on hyperbolic conservation laws with

umbilic points we refer the reader to Isaacson, Marchesin, and Plohr [IMP] for

a general description on transitional shock waves, to Liu [Liu] for a discussion

on asymptotic stability of such waves, and to Glimm [G1, G3] for a review

of applications of bifurcation theory and geometry to the analysis of Riemann

solutions.

2. The Classification of Quadratic Fluxes and Wave Curves

Consider a hyperbolic system of conservation laws

(2.1) 9tU + 8,F(U) = 0, U E R2 ,

with an isolated umbilic point. An point Uo E R 2 is called an isolated umbilic

point if VF(Uo) is diagonalizable, and there is a neighborhood N of U0 such

that VFT(U) has distinct eigenvalues for all U E N - U0 , where

VFT(U) = F(Uo) + VF(Uo)(U - Uo) + -(U _ Uo)TV 2 F(Uo)(U - Uo).
2

Take the Taylor expansion for F(U) about U = Uo:

(2.2) F(U) = F(Uo)+ VF(Uo)(U - Uo) ± -(U - Uo)TV 2F(Uo)(U - Uo) + h.o.t.
2

where h.o.t. represents the remainder. The flux function

(2.3) Q(U - Uo) = F(Uo) + VF(Uo)(U - Uo) + 1(U _ Uo)TV2F(Uo)(U- Uo)

determines the local behavior of hyperbolic singularity near the umbilic point

U0. Since VF(Uo) is diagonalizable, we can make a coordinate transformation

to eliminate the linear term from (2.3) and relabel U - U0 as U to obtain

(2.4) OtU + OaQ(U) = 0,
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from (2.1) and (2.3), where Q(U) = UrV 2 F(Uo)U. From the normal form

theorem in [SS1], there is a nonsingular linear coordinate transformation to

transform the system (2.4) into

(2.5) 8tU + a,(dC(U)) = 0,

where

C(U) = 1(lau3 + bU2v + uv 2 ), a# +b 2 .

We now analyze the geometry of rarefaction wave curves and the genuine

nonlinearity of the quadratic flux system (2.5) in the sense of Lax [La4]. We will

make use of this information to understand the classification of the canonical

form into four regions in the (a, b)-plane and thereby rederiving some of the

results in [SS1] from a different viewpoint.

This analysis is also essential in obtaining an L' apriori estimate for the

seqtcnces of viscous and finite difference approximate solutions via invariant

region techniques. We establish such estimates in Section 7. For the symmetric

case of (2.5) (b - 0), the existence of invariant regions and the geometry of wave

curves were analyzed in [K]. We remark here that our analysis will be consistent

with Darboux's local analysis near an isolated umbilic point (see [Da]).

Recall from (2.5) that the flux vector and matrix take the form:

(2.6) F(U) = dC(U) = -(au 2+ 2buv + v2 , bu2 + 2uv)T,

and

(2.7) VF(U) =(ub bu+v)

The eigenvalues and eigenvectors are from (2.7),

(2.8) A, = [(a+l)u+bv+(-i)iv/((a-1)u + bv )2 + 4(bu + v) 21, i=1,2.
2

and

(2.9) r, =((a - 1)u + bv + (-1)'V((a - 1)u + by) 2 + 4(bu + v) 2 , 2(bu +v)) "T
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respectively. It is then immediate that as long as a 0 1 + b2 , A1 = A2  =

(u, v) = (0, 0), so that (0, 0) is the unique umbilic point for (2.5).

The jth family of rarefaction curves Rj is defined as the family of integral

curves of the vector field given by rj. Therefore, Rj is defined by the following

ordinary differential equation:

du (a- 1)u + bv + (-)'/((a- 1)u + v)2 + 4(bu + V)2

dv 2(bu + v)
'=fj u, v)

(2.10)

-'(a - 1)a + b + (-l)Jsign(v)V/[(a - 1) + ba]2 + 4(b + o)2 vO,

2(ba + 1)

where a = . Define

(2.11) g(a)- [(a - 1 )a + b] + ( - 1 ) j , / [( a - 1) + b a l2 + 4 ( b + a ) 2

2(ba + 1)

Then we have

S gJ)' > 0,

(2.12) F3 (u1V) = (a), V <0.
gida), v < 0.

To analyze the geometry of the Ri curves, we start by noting that

du
(2.13) d- = Fj(u,v),

uV

d2U 1 du
2V= -9,F(u,v)(TV- a)

(2.14) = 1O ,Fj(u, v)(Fj - a), when v :0.
V

We collect, in the following lemma, some basic properties of gj.



Lemma 2.1. The function gj(a),j = 1,2, satisfies

(1) g 1(a)g 2 (a) = -1,

(2) g,(0) = b + 1)ivfi?+T
2

(3) g(o)- 1...±( 1~)j ( 1) 2 +4b 2

g 3 (±o) -2b

:Foo, a>1+b 2, b>O,

(4) lir g1 (a) 0, a>1+b 2, b<O,
,t--- +0 0, a < 1 + b2 , b > O,

4-oo, a >I+ b 2 , b <0,

01- ±0, a< 1+b , b >0,(5) a > 1 + b 2b b < 0,

, --- ±0±0o, a<l±b2 , b>O,

O, a>l+b 2 , b<O,

(6) gj'(a) >0, a>l+b
2 ,

<0, a<l+b 2 .

Next, we make use of (2.11) - (2.14) and Lemma 2.1 to obtain a qualitative

picture of the Rj curves. We distinguish several cases. We remark that from

(4)-(6) in lemma 2.1, a = 1 + b2 defines a boundary curve in the (a, b)-plane

separating qualitatively different wave curve geometries. We shall elaborate on

this below.

First, we assume that a > 1 + b2 . Using Lemma 2.1, we obtain the following

graphs of gj in the two subcases b > 0, and b < 0.

(note to printer: place Fig. 2.1 here in text)

For simplicity, we first consider the case b > 0. From (2.14), the change in

convexity (as a function of the slope) of the wave curves depends on the location

and number of roots of gj(a) - a. A computation using the formulae for the

gjs shows that, in the present case, these locations are given by the roots of the

cubic polynomial

h(a) = -ba 3 + (a - 2)a 2 + 2ba + 1.
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The discriminant of h is given by A = -32b 4 + b2 (27 + 36(a - 2) - 4(a -

2)2) + 4(a - 2)3. Thus, A = 0 gives a new boundary in the (a, b)-plane which

distinguishes different wave curve geometries. This corresponds to the division

between regions III and IV in [SS 11. When A < 0, h has three real roots ao, a1 ,

and a2. We therefore obtain the following figures for the Rj curves in the case

b > 0, a > 1 +b 2 , A < 0.

(note to printer: place Fig. 2.2 here in text)

The case b < 0, a > 1 + b2, A < 0 is completely similar. We show the

corresponding graphs below in Fig. 2.3.

(note to printer: place Fig. 2.3 here in text)

When A > 0, h has only one real root and the wedge-shaped regions in Fig.

2.2 and Fig. 2.3 collapse into a line. This corresponds to region IV in [SS1I.

(note to printer: place Fig. 2.4 here in text)

Next, we consider the case a < 1 + b2 . Using Lemma (2.1), the gj diagrams

are as follows:

(note to printer: place Fig. 2.5 here in text)

By completell imilar reasoning as in previous cases, we obtain the following

Rj curves diagrams:

(note to printer: place Fig. 2.6 here in text)

We now turn to investigate the genuine nonlinearity in the sense of Lax

[La4] for the quadratic system (2.5). It will turn out that genuine nonlinearity

allows a breakdown of the last case above (a < 1 + b2 ) into two subcases. By

definition, (2.5) is genuinely nonlinear in the jr" characteristic field at a point

(u, v) if rj -VAj # 0, i 0 j, at (u, v). A calculation using (2.8) -(2.9) shows that

rj V I = a( + 3by + (1) j a 2 + 3by( + 2(a + 3)y 2

= (a - 1)u + by,

(2.16) y = bu + v.
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Using (2.16), we find that

= 0 b(a-3) a = lb 2
-(2.17) rj -V.j . Y= y ,= 2,a 4, a=b

0" 3b(a-3)Vr 3 2Y = 0,,,,a b

where D = -12(a - lb 2 )(a + 3)2. (2.17) shows that the curve a = b2 divides

the region {(a, b) Ia < 1 + b2 } into two subregions according to a global change

in loci of loss of genuine nonlinearity. This corresponds to the division between

region I and II in [SS1].

We summarize the four boundaries in the (a, b)-plane separating different

behavior of the wave curves and the qualitative change in the system (2.5) as

one crosses these boundaries in the following table:

(note to printer: insert Table 2.1 here in text)

(note to printer: insert Fig 2.7: Four Boundary Curves here in text)

3. Riemann Invariants and Genuinely Nonlinearity for the Quadratic

Flux System

In this section, we study the Riemann invariants of the quadratic flux system

(2.5). We also study the monotonicity of A,, i = 1, 2, as a function of Riemann

invariants wj, j = 1,2. We remark that this does not follow from our knowledge

of genuine nonlinearity (Section 2) as the map : (u, v) --+ (W1, w2) is neither

C' nor globally invertible in general.

Riemann invariants wj = wj(u, v),j = 1,2, are defined as functions that

are constants along any rarefaction wave curves of the iT h family R, where i j.

On regions where wj is differentiable, it is easy to check that since Ri curves

are integral curves of the vector field r,, ri • Vwj = 0, i 5 j.

We shall use the ordinary differential equation (2.10) to define wj. Care

must be taken in its definition to make sure that it comes out as a single-valued

function globally. For simplicity, we restrict ourselves to a half plane domain

defined below. This domain is also an invariant region for the viscous system



12

associated with (2.5) (see Subsection 7.1). We reriark that the w 3 are not

uniquely defined. We shall make the choice that guarantees maximal regularity

of certain quantities. We elaborate on this below. The advantage of this choice

will become clear in Section 4 when we study the entropy functions. From now

on, we assume that b > 0 for simplicity. Another case is completely similar.

Proposition 3.1. Consider (2.5) in region I, Le., A > 0. In this

case, the cubic polynomial h(a) has only one real root ao. Denote

13 + 4bao + (a - 2)a02l

iao I/((a - 1)ao + b) 2 + 4(ao + 1)2

Consider the half plane domain Ik { (u, v) I (-1)k( _aov) _ 0 }, k =

1, 2. Then the following formulae define a pair of Riemann invariants

for (2.5) on Ik:

(3.1.1) wj(ii, i) - ( 1i61P Z' +)oi j() d&}, i+),1+ a~o 10P- i& d} j

with

(3.1.2) Hi(&) = (10+a) E(&)
2(ao + &) D(&)'

where

E(d) = - 2b(ao& - 1)2 + (a - 3)(ao + &)(ao0 - 1) + b(ao + &)2

+ (-1)i'+(ao + &)VQvZ&),

Q(&) =[(a - 1)(ao& - 1) + b(ao + &)]2 + 4[b(ao0 - 1) + (a 0 + &)12,

D(d) =- b(aod - 1)3 + (a - 2)(ao + &)(ao& - 1)2

+ 2b(ao + &)2 (ao& - 1) + (aO + &)3,
1

fi =u + -v,

1

a 0

ii
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Next, we study the ratio MI as a function of & = l- We show that our choice

of the definitioa of w' s are natural in the sense that such Riemann invariants are

globally well-defined on T k and this ratio is an real analytic function of & in a

maximal domain. This analyticity is crucial in analyzing the entropy equations

of (2.5) and is indispensable in the proof of some of our main results (Theorem

4.4.3 and 4.5.2).

Proposition 3.2. Let w, and w2 be defined as in Proposition 3.1.

Then

= rj (&,sgn(5i))
Wi

(3.1.3)

- _exp{(_Vl)+Lj sign(v)(1 + ao (d&}, i :Aj, i,j = 1,2,
JO D(&)

where the functions Fi and r2 are real analytic in & E R'U {(-1)'oo}.

The next proposition concerns the monotonicity of the wave speed Ai ii,

the variable wi. This is important in the reduction of the Young measures for

approximate solution sequences in Section 7.

Proposition 3.3. Suppose that A > 0. Given w1 and w2 as defined in

Proposition 3.1, the eigenvalues Ai, i = 1, 2, are well-defined functions

in (WI, W2 ) E J(Ik). Moreover, we have

A, #0 , for all (WIW 2 )EJ(Ik)-f i i =1,2.
a9wl

4. Entropy Functions

4.1. The Entropy Equation

Following the standard definition in [La2], we call a pair of scalar functions

(?(u, v), q(u, v)) an entropy-entropy flux pair for (2.1) if for smooth solutions

(u(x, t), v(x, t)) of (2.1), we have the additional conservation law

Otr(u(x, t), v(x, t)) + 8,q(u(x, t), v(x, t)) = 0.
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It is easy to check that this happens iff q and q satisfy the compatibility condition

(4.1.1) Vi1VF = Vq.

Eliminating q, we get a second order equation, the entropy equation,

(4.1.2) g.77.. + (gv - fu)rluv - fv77,, + (guu - f,)iU + (guy - fV,)77, = 0,

where we denote F(u, v) = (f(u, v), g(u, v)) T .

(4.1.2) is a linear hyperbolic equation whose characteristic variables turn

out to be the Riemann invariants. A simple calculation gives the characteristic

form as

A2 . 1  Al_2(4.1.3) r7W1 +W A2 - A 77w2 A2 - A1 77w' = 0.

4.2. The Entropy Equation for the Quadratic Flux System

We now investigate the properties of the coefficients of (4.1.3) in the case

of the quadratic flux system (2.5). It will turn out that these coefficients cannot

be written down explicitly as functions of w, and w2 in any reasonable closed

form. Instead, we will compute them as functions of & = !* and study their

properties using information from Section 3. We summarize the main results in

the following proposition:

Proposition 4.2.1. Consider the quadratic flux system (2.5). Sup-

pose that we are in region IV in the (a, b)-plane so that A > 0. Then

the coefficients of (4.1.3) satisfy, for i : j,

(1)

______ T,(&, sign( ))

A2 - A, wi
TI(&, sign(5)) = -T(&,-sign(5)),

where T(&,±1) and T,(a,±1)ri(&,+l) are real analytic in & E

RU {±oo};
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(2) ffi > 0, then

W/i Wf2 - W/1

W2W

W2 - Wi

Here, A = 1 ), j 1, 2, are real analytic in a E R U {±o}

and F E R U {±oo}, respectively;

(3) There exists M > 0 such that IIA,( )II, J~wp9,,Ai(!)JJw, andW1 W1

11(wi,w 2 )V 2 Ai(E-)(wi,w 2 )T IIo, i,j = 1,2, are all bounded by M

for all w, and w2.

The bounds on Ai in (3) of Proposition 4.2.1 will prove to be crucial in

analyzing the singular behavior of q. We shall elaborate on this in Section 4.

As a corollary of (2) above, we obtain

Lemma 4.2.2. The entropy equation for the quadratic flux system

(2.5) takes the form

(4.1.4) 27wIw2 + 2 (W 2 - 1  = 0.
772 -Wl 2 -- 2W

It is clear from (4.1.4) that the coefficients of the entropy equation become

singular along the line w, = w 2 . For the quadratic flux system, we have the

relation w, _5 0 _< w2 (see Section 3). Therefore, upon restriction to the physical

domain, the coefficients are singular only at the umbilic point. The singular na-

ture of the coefficients also suggest that general solutions 77 cannot be expected
to be C 2 . This presents major difficulties in verifying H compactness condi-

tions in the div-curl lemma. This is reminiscent of similar difficulties for proving

convergence of approximate solutions to the gas dynamics equations (see [Ch2,
Di2]). However, the singularities of the entropies are of somewhat different char-

acters in the two cases and the methods for resolving these difficulties are not

the same. The method we shall present generalizes that in [K] and consists of
constructions of very general classes of nonsingular (C 2) entropies. This anal-

ysis is not restricted to the quadratic flux systems and can be generalized to
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obtain a compactness framework theorem (Theorem 6.3) for convergence of ap-

proximate solutions to general nonstrictly hyperbolic systems with an isolated

umbilic point.

We remark that (2) in Proposition 4.2.1 implies that Aj(El) is real analytic

in w, and w2 except at the umbilic point (wI, w 2 ) = (0, 0) and that Ai(,,.) is

multi-valued at the umbilic point. We now interpret this by comparing (4.1.4)

to the classical Euler-Poisson-Darboux equation. The classical EPD equation in

characteristic form is

(4.1.5) 77wlW 2 + 1 W2 2 _ owl = 0.
W2 7. WI W2 - W1

where /1 and 02 are constants. The significance of these constants lie in the

fact that they completely determine the singular behavior of solutions to (4.1.5).

The EPD equation arises as the entropy equation for the isentropic gas dynamics

equations (see [Di2, Ch2]). A comparison between (4.1.4) and (4.1.5) indicates

that, heuristically, we should expect the singularity of the entropy near the

umbilic point depends on the angle of approach and the "size" of A,. This turns

out to be the correct picture and motivates much of the work on the analysis

and cancellation of singularities in Subsection 4.4.3.

4.3 Polynomial Entropies for the Quadratic Flux System

The quadratic flux system (2.5) admits entropy functions that are homoge-

neous polynomials in the physical variables u and v of arbitrary high degrees.

This was observed in [K] for the symmetric case of (2.5), i.e., when b = 0. We

now generalize this result for general a and b. We remark that the simple func-

tion u 2 + v2 is a strictly convex entropy function for (2.5) for all a and b. This

function plays a special role in obtaining H - 1 compactness estimates for the

dissipation of entropy for approximate solution sequences.

Using (4.1.2) and the form of the flux matrix in (2.5), we obtain the entropy
equation for (2.5) as follows:

(4.3.1) ((a - 1)u +bv)'7, + (bu +v)(v - quu) = 0.
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Propositon 4.3.1. Given any a and b, there exists an infinite sequence

of solutions to (4.3.1), 77k (k = 1,2,3,.--) that is a homogeneous poly-

nomial in u and v of degree k.

We look for special entropy functions of the form

k = ko (a), a =- U

V

Then (4.2.1) reduces to an ordinary differential equation for O(a). It is then

easy to check that for each positive integer k, this equation admits a polynomial

solution in a of degree k. Thus, 71k is a homogeneous polynomial in u and v of

degree k.

4.4. The Riemann Function for the Entropy Equation

Next, we study the general properties of entropy in the (w1 , w2 )-coordinates.

In particular, we are interested in understanding the possible singularities of r7

and the construction of C2 Goursat entropies. Goursat entropies are solutions

of the entropy equation subjected to characteristic boundary conditions. To

this end, we first study the Riemann function 1Z for the hyperbolic equation

(4.1.3). Recall that the Riemann function contains all information about the

general solution and is defined as the solution to the following Goursat problem

(characteristic boundary value problem) with special boundary data:

1Z = Z(wl, w 2; , r),
7 WiW2 + A 2 (,) A = 0

W2 - W1 W2 - W 1  =

1(w,r;o,) = exp {wjA2(1) ds}

(4.4.1) IZ(a, w2 ;0, 7) = exp j A,(!) dy}.

Consider the general Goursat problem for the entropy equation (4.1.4)

17WI + 7W2 - W! 7w, 0
w2-w w-w

W 2 - W 1  W2 - W 1

4(w, W2 ) = O(w 2),

(4.4.2) 77(w1, r) = 6(w1),
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where 0 and 0 are prescribed functions, and and r. fixed constants. It is well

known that the solution 71 to (4.4.2) can be expressed in integral form in terms

of '7", 0, and 0 (at least in regions where 77 is C2 ) as follows:

fW2

) + iS) '(s)- 0(s))ds

(4.4.3) + IZ(wI, tW2 ; y, ) +0 +-(y)) dy.

Our strategy is first to analyze the existence and singular behavior of R?

and then make use of (4.4.3) to show how to choose general classes of data

0 and 0 to cancel these singularities. The existence of 1Z is nontrivial as the

coefficients of (4.4.1) are singular. In the case of strictly hyperbolic systems, the

corresponding R and 77 equations will have regular coefficients only and existence

of general solutions follows from standard iteration methods. This is not the case

here and is one of the key difficulties in treating nonstrictly hyperbolic systems.

Our analysis on 1? and q will be applicable to more general situations than

(4.4.1) - (4.4.3). To state our results in their strongest form, we consider the

following Goursat problem of which (4.4.1) - (4.4.3) are special cases.

wlW2 + B6(WI, W 2) 7w2 + C(wI, W 2 ) w, = 0,
W 2 - W 1  W2 - W 1

i( ,w 2 ) = O(W2),

(4.4.4) q?(wi, 1) = o(w1 ).

Here, B and C are real analytic in w, and w2 except at the origin (0, 0). The

corresponding Riemann function satisfies

R?= R(w, w2; a, -0,

R.- 1 W2 + B(wI,w 2 )t + C(wI,w2) 1ZW 0,
W 2 --W 1  W2 - W 1

4Z(WIW 2; W,r) = exp{ S-Wi ds}

(4.4.5)

?Z(wi, W2 ; 97 W2 ) )=exp{~ 1/, W2') dy}
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Theorem 4.4.1. Consider (4.4.5) under the assumptions

(1) B and C are real analytic everywhere except at (wI, w2) =

(0,0);

(2) There exists M > 0 such that B , ,C, I(w1, w 2 )V 2 3(wl,w2)To,

and I(wI,w 2)V 2C(wl,w 2 )T I,, are bounded Iby M on any compact set

(j = 1,2);

(3) =0.

Then there exists a unique solution 7Z(w1, w2 ; , 0) to (4.4.5), with a =

and r = K = 0, which is real analytic in the transformed variables 71,

and T 2 except on the line T I + T 2 = 1, were i 2 = ., and w1  -

The proof of Theorem 4.4.1 relies on a majorization process. A

majorant problem corresponding to (4.4.5) will be constructed and the

existence and analyticity of 1. follows from that of the majorant.

Lemma 4.4.2. Under the assumptions (1) and (2) in Theorem 4.4.1,

there exists M' > 0 such that

1( (I, T2 < M -

1-W 1 -W 2  1-w 1 -W2'
C(T1, U72) < MI

1 - TI - W2 1 - UT, - U2

Here, < denotes majorization in the sense of real analytic power series.

Proof of Lemma 4.4.2. We will prove that

(4.4.6)(, 2) M

1 - Wl - W2 1 -WI -7 2

The other majorizing inequality involving C can be proved in a similar fashion.

By assumption (1) in Theorem 4.4.1, B(8,0FI 2 ) is real analytic everywhere

except at the point (7 1, T 2 ) = (1,0). Thus, away from this point, B admits a

power series representation of the form

B(TjT 2 ) = z CmnUT mW2".
m,n>O



20

Moreover, in the region Jw + w21 < 1, we have

1 - z (mm -gn)
1  

n.1 - Ti -- T2 0(n
m,n>O

Combining the two power series, we obtain

8(771 ,7 2 ) Cmn~ m T2~ n (m~nW mT 2 n
W1 -W2 n

m,n>O k'1>0

(4.4.7) W W (m"[- n)W lm ' 2 n '

p,q>O 
O<m<p
O<n<q

The formula (4.4.7) is valid in the region 1 1 + t 21 < 1. Using (4.4.7), we trans-

late the majorization inequality (4.4.6) into an equivalent inequality involving

the coefficients Cm,n in the power series expansion of 3,
83(T1, T2) < M/

<K
1 - U 2  1- I-- 2

1:[ Cp-rn,q-n[ <5 M'I( + q)

p~o
O<n<q

(4.4.8) E plq! 1 + nCp-m,q-n1 < MI.(4.48) € [P>0 (p +q)! n-

O<n<q

Our task is to verify the last inequality in (4.4.8). To this end, we consider
the auxiliary function g(z) where m is an integer and g(z) = Ek>l g kz

(1--z)n+i~ resa nee n ~)=~>gz1
an analytic function of z in the disk Izi < 1. We have the following formulae:

g(Z) = . Z kZ- (tn n
(1k>l n>0

(4.4.9) =z Zq (m+n> q- n'

q>1 O<n<q

We now make a useful choice of g(z) that is related to B. First, we rewrite

B(W 1,T 2 ) in the following way:

B(W, w 2) = 9T(2)11 ,

10

(4.4.10) g(T 2 ) = ZCckw2.

k>O
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We will take g to be gi in (4.4.9). We claim that, on 1 2 1 < 1,

(4.4.11) gp-,(m<2) M(4.411)(1 _ l2),,+ , < (1 -_W2),+l,

where M is a constant independent of p and m. The proof of the claim de-

pends on certain decay estimates of the coefficients Cmn. Consider B(poe 8 , z) =

E-,1>o gl(z)Ploe1 ° where 0 < Po < 1 and z belongs to the unit disk on the complex

plane. B(poe' ° , z) is analytic for all IzI < 1. Moreover, we have

gl(z) = CPO 1  B(poeie, z)e - 1 dO,

1gj(z)j ___ 27rcpotljjBjj,.

Here c is a universal constant. Now let po --+ 1-, we obtain

(4.4.12) Igj(z)j < 27rclIBII.

Likewise, we have

g'(z) = cp0
1  a 2 3(poeie z)e - " o dO.

Using the bound Ilz26,B(poeG, z)c < c', where c' is independent of p0 and 0,

we obtain in a similar fashion,

(4.4.13) 1 2gI(z)II _< 27rc",

where c" is a constant independent of 1.

Combining (4.4.12) and (4.4.13), it is not difficult to obtain a decay estimate

for the coefficients of B

1 1
(4.4.14) IcikI :_ M min((1 + 1)2' (k +

Now (4.4.11) is equivalent to

o<n<q
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The right side satisfies

,_ M, ((-m +)
(m+q) ( n 1

n>O

_ + q) E icp-m,q-ni
q n>q

-n CP-mq-nI"

O<n<q

This proves (4.4.11).

We now show that (4.4.11) and (4.4.14) implies this lemma. Using (4.4.10)

and (4.4.9), we see that (4.4.11) is equivalent to

(4.4.15) q0 2q z m+n < M

q>O O<m<p O<m<p
O<n<q

The right side of (4.4.15) can be summed to give

(4.4.16) (l/ 1+2  + 1)T2q .

o_ ,_p _ q+1

(4.4.16) is now easily checked to imply (4.4.8) by virtue of (4.4.14).

This completes the proof of Lemma 4.4.2.

Using Lemma 4.4.2, we obtain a majorant problem of (4.4.5).

Theorem 4.4.3. Suppose g = g(T,i 2) is real analytic in a domain

Q and that g is the solution to the following majorant problem:

9 G071', WT2),

MI
!90 -1 =l- 2(901 + 9-02) = O

o - 1 -W2

(4.4.17) 9(0,wT2)--" ---.
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Then, if 1Z is the solution to (4.4.5) with r = K = 0, we have, on Q,

1Z < in the sense of power series in wffj and U72 .

We remark that (4.4.17) is the celebrated Euler-Poisson-Darboux equation.

We summarize some of its most fundamental properties in the next lemma. We

also note that although the analyticity of g (see Lemma 4.4.4 below) implies that

of IZ, 1Z is not everywhere analytic on the domain of interest to our problem.

It turns out that the line w, = w2 (and hence the umbilic point) lies on the

boundary of the region of convergence of the power series for 1Z and Q. On this

part of the boundary, 1Z and its derivatives are singular. We characterize these

singularities in Lemma 4.4.4 and Lemma 4.5.1.

Lemma 4.4.4.

(1) In the variables u31 = 1 - T, and -02 , (4.4.17) is an Euler-

Poisson-Darboux equation with special Goursat data:

M/
9'i, 1 + W2-Z1(9161 - 902) = O,

M1

9(tbi, o) = -I
Wi

(4.4.18) 9(0,U72 ) = M

(2) The Riemann function of the first equation in (4.4.18) is

H(ZLi, T2; ,(K) = o6 1 - i 2 )2M'
(u - K)M'( - UT2 )M'F(M',M'.I ;p),
(- u3i)(W2 - K)

(4.4.19) P = (S -l)(U - )

Here, F is the Hypergeometric function defined by the power series

moFaOY P (a + 1)-(a + m -1f( + 1).(/ + m -1)

(4.4.20)

PIl <.
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(3) The solution to (4.4.18) is given by

!(Z 1 ,T 2 ) = M' + fj ((u1 ,W 2 ; [,O)M'(I _ 1)-2 d

(4.4.21) + j 7"H(u ,W2; 1, y)M'(1 - A'I)(1 - y) - 2 dy.

The proof of Theorem 4.4.1 follows from Theorem 4.4.3 and Lemma 4.4.4.

4.5. C 2 Goursat Entropies

In this subsection, we characterize the singularities of entropies and we show

how to construct Goursat entropies that are regular. We continue to work on

the general level of equations (4.4.4) and (4.4.5).

Similar to (4.4.3), we have an integral representation of I in terms of 7?.

rj(Wl, W2 ) = ()ZW, 2; , K~) + IW 1ZW iW2; C, 3)(9" (S) + s))d

(4.5.1) + I.(WIW 2 ;YK)(O'(y) + )(y))dy.

Using (4.5.1) with n: = 0, it is clear that whatever singularities q might

have are inherited from those of 1Z. Since ? < !, the singularities of 1? are

dominated by those of g. We make this precise with the aid of the next lemma.

Lemma 4.5.1. Suppose that F and F2 are real analytic on an open

domain Q C R2 . Assume further that

(1) F < F 2 on Q,

(2) F 2 = 1.1F2 where F2 is analytic on Q and S is analytic on Q.

Then we have

jjSF~jjL-(11) !_5 i' [l,(

F = -F 1 , where F1 = SF, is analytic on
5,
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We have characterized the singularities in g and its derivatives. By repeated

applications of Lemma 4.3.1, we can show that the singularities of R and its

derivatives are dominated by those in g aid corresponding derivatives. Thus, we

have established a kind of comparison principle for the singularities of solutions

to second order hyperbolic equations of Euler-Poisson-Darboux type One of

our main objectives is to construct regular solutions to (4.4.4). It is now clear

that this can be achieved if we can prescribe Goursat data that could can,cl the

type of singularities in ! since they dominate the singularities in 1 which is the

Riemann function for (4.4.4).

We now make use of what have been developed so far to construct general

classes of entropies that are C2 in w, and w2. The domain of interest for our

problem is {w, < 0 < w 2 }. It is enough to focus our attentions on a compact

set containing the umbilic point {wT < w 1 !5 0 < w 2 _< W2} where + > 0 and

w- < 0 are fixed constants. Also fix a constant 6 > 0 satisfying 161 < w+  -w 1 .

Without loss of generality, we consider (4.4.4) with the special choice of

Gourst (lata 0(w2) - 0:

+ 3(wIw 2 ) + C(wI 'W 2) ,= 0,
W 2 - W 1  W2 -W 1

i-(, W2 ) 0,

(4.5.2) ((w, K) = 9 (wi).

There is no loss of generalities since an analysis similar to what is shown

below will allow us to construct C2 entropies with Goursat data 9 - 0 and 0

arbitrary (up to a finite number of conditions, see Theorem 4.5.2). The general

case (as in (4.4.4)) then follows from a simple linear superpopition of these two

special cases.

Using the fact that 1A < g and combining Lemma 4.4.4 and Lemma 4.5.1,

we obtain a decomposition of 1A into a product of a singular and a regular

part. The regular part is analytic everywhere. A similar decomposition exists

for !9 using Lemma 4.4.4. Moreover, from Lemma 4.5.1 again, it is possible

to set the singular parts to be identical for both 7? and !9. Then using this

decomposition with (4.5.1), it is possible to ob t a in conditions on 0 that guarantee
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the cancellation of singularities. We now state our main result in this section.

Theorem 4.5.2. Given a positive integer m and given a compact set

K containing (0, 0) in R 2 . Consider the Goursat problem (4.5.2) with

, = 0. There exists a subspace M C L 2 [wj", -6] satisfying codimM <

oo such that if

(1) OB ,MC m ,

(2) (wi) = o, for allwi > -6,

then there exists solution E Cm ([w-, 0] x [0, wt]) to (4.5.2) satisfying

max sup Iw1l-k jW21_' -k ",9 i <C.
O<k+l<m (w 1 ,w 2 )EK

Recall that (4.4.1)- (4 '.3) are special cases of (4.4.4),(4.4.5) and (4.5.1).

We obtain immediately existence of many Cm Goursat entropies for the qua-

dratic flux sy -oem (2.5).

Corollary 4.5.3. Under the same assumptions on the Goursat data

as in The( t m 4.5.2, there exists -z solut-on n E Cm ([w-,0] x [Ow+])

satisfying

max sup 1Iw 1 I-kI' 2lw'-' , 71i <C.

<k+l<, (~WI,w2 )EK

We now turn to investigate the regularity of entropies constructed in The-

orem 4.5.2 and Corollary 4.5.3 as function of the state vari:,iles u and v. This

regularity is needed in our use of compensated compactness to prove the con-

vergence of approximate solutions to (2.1).

In many strictly hyperbolic systems, such as the system of elasticity, the

map J : (u, v) - (WI, w 2 ) is C2 . Therefore. C2 regularity of entropies in the

(u, v)-coordinates is a direct consequence of Theorem 4.5.2. For nonstrictly

hyperbolic systems, the coincidence of eigenvalues A, and A2 usually means that

the geometry of the wave curves are very singular at the umbilic point. Thus,
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J is usually not C2 and additional work is necessary to get C2 regularity for

71= v).

We now restrict ourselves to region IV of the quadratic flux system (2.5),

i.e., where a and b satisfy A = -32b 4 ± b2 [27+36(a-2)-4(a-2)2 ]+4(a-2)3 > 0.

Using Proposition 3.1, we have

Proposition 4.5.4. Consider the quadratic filx system (2.5) in region

IV, i.e., A > 0. Near the umbilic point (u, v) = (0, 0), the derivatives

of the Fiemann invariants satisfy the following estimates:

wi=O(1), i=1,2,
(4.5.3) a"9"'wi = 0( Wi, )  1 < m + n < 2.

Next, we recover from the proof of Theorem 4.5.3, certain fine estimates

of the derivatives 7" in wl and w2. As we shall see, these derivatives vanishe to

certain orders as they approach the umbilic point.

Proposition 4.5.5. Consider (2.5) in region IV. Given any nonnega-

tive integers m, n, k, 1 with m > k, n > 1, there exists entropy functions

constructed using the method in Theorem 4.5.3 and which satisfy the

following estimates near the umbilic point:

'Ol'0= ((wI m-k Iw21 '-I).

Now using the chain rule and combining the estimates in Propositions 4.5.4

and 4.5.5, we obtain

Theorem 4.5.6. Consider (2.5) with a and b satisfying A = -32b 4 +

b2(27+36(a-2)-4(a-2)2 )+4(a-2)3 > 0. Let J: (u,v) - (wI,w 2 )

denotes the map from the state space to the Riemann invariants plane.

Suppose that qj is the solution to (4.4.2) as constructed in Corollary

4.5.3. Then we have

-q0 JE C2(R 2 ).
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5. Approximate Solutions and Young Measures

5.1. Parabolic Approximations

We consider parabolic approximations to the general system (1.1) by adding

artificial viscosities. Recall that (1.1) together with initial data Uo(x) takes the

form

OtU + aF(U) = 0, t > O,x E R,

(5.1.1) U(x,O) = UO(x).

Consider a sequence of parabolic approximate solutions U' governed by the

associated parabolic system

O9tU' +OF(U) = EOX(DOXUE), t > O,x E R,

(5.1.2) U'(x,O) = Uo(x),

where D > 0 is a non-negative matrix (viscosity matrix) and E > 0 measures the

amount of artificial viscosities in (5.1.2).

We are concerned with the convergence of U" to a weak solution U of (5.1.1)

as E - 0+. A compactness framework theorem (Theorem 6.3) will be established

in Section 6 to attain this goal. It will then be applied to the quadratic flux

system (2.5). This is made possible by a reduction of Young measure analysis

(Theorem 6.2) using large classes of regular entropy functions (Theorem 4.5.2

and Theorem 4.5.3) constructed in Section 4. In this section, we dispense with

certain preliminaries concerning existence and L' apriori estimates of solutions

to (5.1.2). For simplicity, we take D = I, the identity matrix.

Proposition 5.1.1. Let cl and c 2 be constants. Let Q,c,- {(u, v) IcI <

w1 <_ 0 <_ w < c2 }. Suppose that the Riemann invariants w, and w2

are quasi-convex on Q CC2. That is, on aQc, C2

r . V 2w2
. r > 0,

r V2 W, "r2 > 0.
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Then that Q 1Cc2 is an invariant region for (5.1.2), i.e., Uu(x) EQ1112,
for all x E R, implies U'(x,t) E fCIC2, for all x E R, t > 0. Moreover,

if (5.1.2) admits a family of such invariant regions which spans R

then we obtain an apriori L' bound for solutions U' to (5.1.2).

Proposition 5.1.1 is a straightforward consequence of the invariant region

theorem (see [CCS]). Granting such an L' apriori estimate, a local in t solution

to (5.1.2) obtained by standard iteration arguments can be extended globally in

t>0.

5.2. Finite Difference Approximations

As is known, it is very complicated to directly construct the Riemann so-

lutions for nonstrictly hyperbolic systems of conservation laws (cf. [IMPT, IT,

SS2, SSMP]). Fortunately, we can obtain the global entropy solutions of liemann

problems in any bounded domain in (x,t)-plane by proving the convergence of

the viscous approximations and noting the finiteness of propagation speeds of

the entropy solutions.

Now we construct Lax-Friedrichs approximations [La3] and Godunov ap-

proximations [Go] Ue(x,t) = (ut(x,t), vt(x,t)).

On the upper-left plane t > 0, we have the grid

t=nh, x=je; j=0,±1,2,--- , n=0, 1,2,

where n > 0 and j are integers and the positive constants h and R are the time

step length and the space step length, respectively, that satisfy the inequality

(5.2.1) max( sup lAi(U')I) < - <M
t=1,2 -oo<z<oo

O<t<Tr

for any given T > 0. We shall prove that Ut(x, t) are uniformly bounded that

(5.2.1) always holds.

5.2.1. Lax-Friedrichs Approximations
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For integers n > 1, we set

J, {j :j integers, n + j = even}

On the rectangle {(x,t) (j - 1)f < x < (J + 1)f, 0 < t < h, j odd}, we

define Ue(x, t) as the solutions of Riemann problems

(1.1) ,
V~t=o = '((j - 1)f) , X < jY

tuo((J. + 1)), X > ji,

where Uo(x) -Uo(x)Xt(x), and

1 1, x E[,l
X td ) = 0 , otherwise,

and define

UJ - U(x, h - O)dx.U} 2f J('-I)t

Suppose that (u', v') have been defined for t < nh. Then, on the rectangle

{(x,t) j < x < (j + 2)e, nh < t < (n + 1)h, j E Jn}, we define U'(x,t) as the

solutions of Riemann problems

U~~ = Uj,n 7 X < (j + 1)f,

j+2, >(j+

and define

(5.2.2 U;+I 1 I(j+1 )fp

(5.2.2) U-+'- U(x, (n + 1)h - O)dx2f 0( -I)t

In this manner we obtain the Lax-Friedrichs approximations on the upper-half

plane, and the difference scheme (5.2.2) is just the Lax-Friedrichs scheme [La3].

5.2.2. Godunov Approximations
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Similaxly, on the rectangle {(x, t) :j < x < (j + 1)t, 0 _5 t < h}, we define

U'(x, t) as the solutions of Riemann problems

{U]t--0-{ Uto(je)), > +),

where Uo(x) = Uo(x)Xt(x), and

1, x E [-,1,
Xd~x) = 0 , otherwise,

and define 1 (j+1/2)1

U1 1/2)1 Ut(x, h - O)dx.

Suppose that U' have been defined for t < nh. Then, on the rectangle

{(x, t) je < X <(j + 1)f, nh < t < (n + 1)h}, we define Ut (x, t) as the solutions

of Riemann problems
((1.1),

U~t=h = Un , X < (j + )y

1 2,

and define

1 (j+1/2)t
(5.2.3) Un+1 = U(x, (n + 1)h - 0)dx=, _ 1~-/2)t

This completes the construction of the Godunov approximations.

Remark 1. The approximate solutions Ul(x, t) constructed above have the same

local structure as the random choice approximations of Glimm [G21.

Remark 2. If the Riemann solutions have convex invariant regions in U-space, it

is easy to check that the Lax-Friedrichs and Godunov approximations have the

same convex invariant regions in U-space from their construction and Jensen's

inequality. This enables us to obtain Lw uniform bounds for these approxima-

tions.
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5.3. Young Measures and Compensated Compactness

The Young measure representation (see [Ta]) for the sequence of bounded

functions in an appropriate space is an efficient tool for studying the limit be-

havior of the approximate solutions of nonlinear problems, especially for conser-
vation laws because of the lack of regularity of the limit problems. By combining

the Young measure representation with compensated compactness [TaMu], one

can transfer the singular limit problems to the problems of solving some func-

tional equations for the corresponding Young measures, that is, to studying the

structure of the Young measures satisfying the functional equations. If one can

solve these functional equations to clarify the structure of the Young measures,

the limit behavior of the sequence can be well understood. Therefore, the essen-

tial difficulty is how to solve these functional equations for the Young measures.

This difficulty is overcome for some important systems in conservation laws (cf.

[Di, Chl, Ch2, DCL, K, Mo, Se]). In this section we review some results on the

Young measures and the compensated compactness for subsequent development

to solve general nonstrictly hyperbolic systems.

Theorem 5.3.1([Ta]). Suppose that U : R. -+ R' is a sequence of

bounded measurable functions

(5.3.1) U(x,t) E K, a.e.

for a bounded set K in R n. Then there exists a subsequence (still

labeled UE) and a family of Young measures

vx,t(A) E Prob.(R"),

such that

(1) (i) for any continuous function g,

- urn g(UE) =< v.,t(A),g(A) >= R g(A)dv.,t(A);

(2) (ii) U'(x,t) -- U(x,t) strongly if and only if v,,t is a Dirac mass

Vz,t = 8U(Z,t),
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for almost all (x, t);

(3) (iii) lx,t satisfies

(5.3.2) < Vx,t, 77, q2 < Vz,t, 7"1 > < Vz't, q2 > a.e.
772 q2 < v,,t, 77, > < v,,t, q2 >,

provided that

(5.3.3) 77i(Ue)t + qi(UE)= compact in H oc'

for continuous function pairs (77j, qi), i = 1, 2.

This theorem ensures the existence of the Young measures uniquely deter-

mined by the sequence of bounded functions. The second result indicates that

the strong convergence of the sequence is equivalent to the one point structure

of the support of the Young measures. Furthermore, the boundedness of U'

(5.3.1) automatically ensures that

?7i(U')t + qi(U'). E Hlo1

for continuous function pairs (7i, qj), i = 1,2. This theorem indicates that an

extra condition of weak composite compactness for 77i(UE)t + qi(UE)z can give

us very useful information for the Young measures. These theorems provide a

framework by which one can prove strong convergence of the sequence UE(x, t)

satisfying (5.3.1) and (5.3.2) by deducing

X = bW-limU(z't)(A)

from the functional equations (5.3.3) for some continuous function pairs.

The following compactness embedding theorems are useful for obtaining the

condition (5.3.2) for conservation laws.

Theorem 5.3.2. Let 1 < q < p < r < oo. Then

(compact set of Wo') fl (bounded set of Wloc ) C (compact set of WolI'P).
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The proof of Theorem 5.3.2 can be found in [DCL, Ch2].

Theorem 5.3.3([Mu]). The embedding of the positive cone of W - i rP in W - l 'q

is completely continuous for q < p.

Theorem 5.3.2 indicates that compactness in o coupled with bound-
edness in W-c yields compactness in W 1oc. Theorem 5.3.3 says that the

uniformly lower (or upper) bound in the dual sense in W - m of the sequence in

W- l 'q leads to compactness in W -l ' ,q < p.

5.4 The Dissipation Measures ir(U'), + q(U'),

5.4.1 Parabolic Approximate Solution Sequences

Consider a sequence of viscosity approximate solutions {Ul},>O to (5.1.2).

Now suppose that q. is a C2 strictly convex entropy for (5.1.1), and that Uo(x)

tends to a constant state U as lxi -- oo and Uo - CU E L' n L'. In the case of

(2.5) we may choose qj. to be u2 + v2 . Multiplying (5.1.2) by VY7.(U' ) - V7.(

a standard integration by parts argument gives the estimate

Ej Ujzl2 dX dt < C,

where C depends on UO.

Consider any C2 entropy-entropy flux pair (ij, q) for the system (5.1.1). In

the case of (2.5), such pairs were constructed in Section 4. Multiplying (5.1.2)
by V 7 , and integrating by parts, we get, after using the L' bound on U', the

boundedness of V2 rq on compact sets and a standard application of Theorem

5.3.3 [Mu], a weak compactness estimate for the dissipation measure

i(U)t + q(U). E compact set of Ho.

By the L'C bound of U', as e --+ 0+, U' converges in weak star topology in

L'. Then, by Theorem 5.3.1 [Tal, there exists a family of probability measures

v(x,t), the Young measures, that describes this weak convergence in the following

way. For all continuous function g, we have

w * -limrn_.o+g(U'(Xt)) = Jg(\) dv(.,t)(A) < v(x,t),g >
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Let (77, q) and (ii, ') be two pairs of C 2 entropy-entropy flux. They satisfy

compactness conditions in H 1 as stated above. Then, by Theorem 5.3.1 again,

we get the commutation relation:

(C) < v, i- q >=< v,i >< v,q > - < v,# > < v,q >.

Here we have dropped the subscript (x, t) on v(z,t).

5.4.2 Finite Difference Approximate Solution Sequences

Consider approximate sequences {U'le>o generated by either the Godunov

or the Lax-Friedrichs schemes. Using Green's formula, we obtain that, for any

4 E C0l(IIT),

(5.4.1) Jj (?(U)Ot + q(Ut')O)dx dt = M(O) + L(O) + S(O),

where

(5.4.2) M(O) = L (x, T)?q(U'(x, T))dx - J (X, 0)7(U'(X, 0))dx

(5.4.3) S(O) = fT  - M) O(x(t),t) d,

(5.4.4) L(O) = L 1 (¢) + L 2 (0)

For the Lax-Friedrichs approximations, n +j = even,

tj+1)1

(5.4.5) 
jn

(j+l)t(7( t)n)(

L20 j~U~ iU t )( - O5 )dx.
j,n

For the Godunov approximations,

{(j+1/2)tL,(O) = f 7,-/) (77(J-It)-7 (u~))dx,

(5.4.6) ,n1/2)t

L2(0 = E(77(Ut-) - 77(U t-)) (0k - 0S') dx
,, 1-1/2)t
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where Utn = Ut(x, nh - 0), 0! = ¢(j, nh), the summation in , is taken over

all shock waves s in Ut at fixed time t, and a is the propagating speed of the

shock wave. If s = (x(t), t), then [71] and [q) denote the jump of 7(U'(x, t)) and

q(U'(x, t)) across s from left to right respectively, namely,

[ii] = 7f{Ut(x(t) + 0,t)} - 7{UX(t) - 0,t)}

[q] = q{Ut(x(t) + 0,t) - q{Ut (x(t) - 0, t)} .

To arrive at (4.4), we first notice that U have compact support in the region

HIT and, therefore, we may substitute 77 = 77., q = q. and € 1 in the equality

(5.4.1). Then

Z j_ (77((U-) - 77.(Un))dx + { 177]- [q.]} dt
j,n l-11

=f CO ?.(U(x,0))dx - ] q.(U(x,T)) dx

(5.4.7) 1 , o (X)) dx < C,

while

Z J(-)r (Un) - 77.(U7n))dx

j, n J( 1

(5.4.8)

dx( (1 - 0)(Un - Un)T V277.(Un + O(Un - Un))(Un -Un)d
j,Jn (-.1) fo

Notice that the entropy inequality a[77.1 - [q.] > 0 is satisfied across the

shock waves and q. is a convex entropy. We obtain from (5.4.7)-(5.4.8) that
T

(5.4.9) j0 {a[r,*]- [q.]} dt < C,

and

(5.4.10)

dx (1- 9)(U2 
- u7)T V 2 Ti.(U7 + -(U n -U7))(Un-U7)dO <C

(,n .I-)f
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In particular, since rT- V'rq. r > Co(r, r), Co > 0 constant, we obtain

f(3+1)t n U- un12dX
(5.4.11) j - <, _

For any bounded set fl C HT and weak entropy pair (77, q), we derive from

(5.4.2)-(5.4.5), and (5.4.9)-(5.4.11) that

[M(¢) <5 C1101[C((I,

IS(M)I 111C If T E 10[q] - [q]Idt

<C11 0111Co T {[.]- [q.1l dt

o (j+1)t

IL=()l I jn (j (U) -(U7))dxI

0+-1)t

n (j+l)t

< c11€11Co~ >/-> dx 1(1 -O)(Un Un)T V 2 17.(Un +O(Un - Un))(U_ -Un) dO

j 4l-1)o J•

Hence

I(M + L, + S)(€)1 < Ci1€1Co;

that is,

IIM + L, + SlIc; < C.

compact w -l,qof2 < n ,W

Using the embedding theorem C (Q) c +(), 1 < qo < - we

have

(5.4.12) M + L1 + S compact in W-lqo(q)
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Furthermore, for any 0 E CO(fQ), < a < 1, we have from (4.31) that

(j+1)t

2( )I < Z I¢(X,n h) - €1 ,(U') - 77 (uj)I dx
j,n

( j,- t - )tIIV771IL-f (j+ 1) I

u a-1/IL 2  IIIc( U Y x)/

n

rr- 1 -/IIfW. 'P' 1) I P > -

that is,

(5.4.13) n n2

IlL21wj -1.qo(Q) < Ce 1  - -- 0 , (e , 0), 1 < qo < n < n
-n + n-la n--

We obtain from (5.4.12) and (5.4.13) that

M + L + S compact in W-lqo($),

with the aid of Theorem 5.3.2 and Theorem 5.3.3. Therefore,

(5.4.14) tl(Ut)t + q(U'). E compact set of Hj-.

Similar to Section 5.4.1, we can obtain the commutation relation (C) from

(5.4.14).

6. Compactness Framework for Approximate Solutions

Now we establish a structure framework for the Young measures, which are

uniquely determined by the approximate solutions to the system (1.1) with an

isolated umbilic point P = (fV1 , fV2):

Al(P) = A2(P),

in the Riemann coordinates. Then we conclude a corresponding compactness

framework for approximate solution sequences to the system (1.1).

First, we list some basic assumptions on the structure of (1.1) for the frame-

work theorems that we will state.
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Hypothesis on the Hyperbolic System (1.1) for Theorem 6.1.

(M)_ Ai(wi, W2 )
(H) ~A 2 -A 1  W 2 - WI

where i 5j, i,j = 1,2, and Ai is r,?al analytic in (w1,w 2 ) except at (0,0);

2

(H2) E ([IAiIIL- (n) + I[Wj22j "AiIL-e(Q2)) <+ 0,

where Q is any compact set containing the umbilic point P.

Theorem 6.1. Assume that (1.1) satisfies (Hi) and (H2). Suppose

that a Young measure v E Prob.(R 2 ) satisfies

(6.1) supp V(Wl,W2) C: [W-,W+] X [W-,W+],

(6.2) < v, 77,q2 - 772ql >=< v,, > < v, q2 > - < V, 772 >< v, q, >,

for all C2 Goursat entropy-entropy pairs (77i, qj), i = 1, 2, as constructed

in Section 4 for the systems (1.1) with an isolated ur2bilic point P.

Then

supp v(W 1 ,W 2 ) C { (W1,W 2 ) I Aw,, = 0, i = 1,2 .

Remark. For systems with more than one isolated umbilic points, a variant of

Theorem 6.1 will be provided in [CK2].

Combining Theorem 6.1 with Theorem 5.3.1, v. e have

Theorem 6.2. Suppose that U'(x, t) are measurable functions satis-

fying

(6.3) IIU"IIL" < M < +00,

(6.4) i7(U')t + q(UE). compact in Hc,

for any C2 Goursat entropy-entropy pair (q, q) to the systems (1.1)

with an isolated umbilic point. Suppose that (1.1) satisfies (Hi) and

(H2) and that Ai,,,, 5  , i = 1, 2. Then

(6.5) (wl(V'), w2(U')) -- + (WI(X, t), w2(.X, t)) , a.e.
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where (wl(U), w 2 (U)) are the Riemann invariants.

Remark. Theorem 6.1 and Theorem 6.2 provide a framework for the compact-

ness of the sequence of the Riemann invariants, determined by the sequence of

approximate solutions satisfying the conditions (6.3) and (6.4).

We sketch the ideas in the proof of Theorem 6.1. Without loss of generality,

we assume that the umbilic point P = (0, 0). Suppose that R is the minimal

rectangle in (W1 , w2) space containing the support of v. There are two cases:

1. R does not contain the umbilic point (0, 0);

2. R contains the umbilic point (0, 0).

We will treat Case 2. Case 1 is similar and less complicated. We also assume

that R is not a line segment parallel to any axis (this case can be dealt with using

the method shown below), thus, R = [w-,0] x [0, w+ ] for some w- < 0 < w+ .

Let 6 > 0 denotes the constant used in the construction of entropies in

Section 4. Assume that it is chosen a priori to satisfy wI < -6 < 0.

Tule proof will rely on the following Propositions and Lemmas.

Proposition 6.3. Consider the entropy function constructed in Propo-

sition 4.5.2. Assume that wr E (w', -6) is a fixed constant and that

the Goursat data 9 is supported either on the interval (w,-, w,*) (west

type entropy with limit w*) or (w*, -6) (east type entropy with limit

w*). Then the entropy 77 and its flux q admit integral representations

of the form

7 (Wl,W2) = I(W1,W 2)0(Wl)+ J(WI,W 2 ;y) dy,

q(Wl,W2) = K(wi,W 2)O(wI) + L(w,w 2 ;y) dy,

where I, J, K, L are smooth as long as y < 0 and wi < 0. Moreover,

1>1.
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Proposition 6.4. Let (qj, q) be of type east with limit a - e' and let

(qi, 4) be of type west with limit a + E'. Suppose that for all e' > 0

sufficiently small, < v, rq - qjq >= 0. Then

suppv C { (wl,w2) I (aw 2 ) = 0 }.

If we assumL also that a- (a, w2) does not vanish. Then supp v n

{(w1iw 2 )w 2 >_ 0,w, = al is empty.

The proof of Proposition 6.4 consists of a construction of the trace of v on

the line w, = a. The argument is quite standard and we refer the reader to [Se].

For the sake of simplicity, we assume from now on that aA, : 0, i = 1, 2, is
awi

satisfied. The general case is only slightly more tedious. With this assumption,

v can be reduced to a point mass in the Riemann plane below.

Next, using Proposition 6.3 and some properties of the kernel functions

I, J, K, L, one can show that

Proposition 6.5. Fix 6 > 0. Let wi satisfy w- < w* < -6 < 0. If

for all est type entropy q7 with limit w* we have < v, 7 >= 0 then

suppv v f{(w1,w 2) w 2  _ 0, w* < W1 _ -6} is empty.

Now, we will make use of Propositions 6.3 - 6.5 to reduce v to a point mass.

The reduction process will take several steps. First, we show that the support of

v, must concentrate only at the four corners of R, i.e., v is the sum of four delta

functions. Then we further reduce the number of delta functions from four to

one.

It turns out that after some detailed analysis, Propositions 6.4 and 6.5 allow

us to concentrate the support of v on the extreme left vertical edge of R and an

arbitrarily narrow vertical strip containing the umbilic point.

Proposition 6.6. supp v C {(w1,w 2 )[O < w 2 < w + , and w,

w- or - 6 <w _ 0}.
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By using entropies of type north and south and by performing a similar

reduction process on horizontal line segments interior to the rectangle R, we

conclude that suppv is concentrated on a horizontal strip of width 6 and cn

the line w2 = w+ . Due to the complete similarity of the proof, we omit this

argument but summarize the result as follows:

Proposition 6.7. supp v C {(wi,w 2 )O < w, < w-, and w 2

w 2  ob>W2 >0}.

Proposition 6.6 and 6.7 imply that the support of v is in fact concentrated on

the square {(W1,W 2 )10 < w2 <_ 6,-6 < w1 < 0}, and the points (wT,0), (0, w),

and (w-,w+). Now, 6 > 0 is small but arbitrarily fixed. Let 6 -+ 0. We obtain

Corollary 6.8. The support of v is concentrated at the four corners

of R, (0, 0), (0, w2'), (w-,0), and (w-, w+).

Knowing that the Young measure v is a sum of four delta functions at the

corners of R, we reduce v further. Let Ai, i = 1,2,3,4, denote the corners of
R, A1 = (0,w+),A 2 = (0,0),A 3 = (wT,0),A 4 = (w-,w+u).

By Corollary 6.8,
v = >j /3 iSAi,

1<i<4

where

/3,_O, i=1,2,3,4, and E pi=i.
1<i<4

To reduce v further, we apply an variant of Theorem 6.1 in [Se].

Proposition 6.9. Suppose that /3i > 0 for all i = 1, 2,3,4. Then

O,,,A1 = 0, on the line segments AA 4 , A2 A 3 ;

Ow2A2 = 0, on the line segments A 1 A 2 , A 3 A 4.

Now, by assumption, OwA 1 and 0
W2A 2 are nonzero everywhere.

This contradicts the conclusion of the above Proposition. Thus we

have
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Lemma 6.10. There exists an i, 1 < i < 4, such that #j = 0.

Therefore, V is only a sum of at most three Dirac masses. Further reduction

of v can be achieved by combining polynomial entropies (Proposition 3.1) and

Goursat entropies. Finally, we conclude that the Young measure v is a point

mass on the (w 1 , w2 )-plane.

This completes the sketch of the proof of Theorem 6.1.

7. Applications of the Compactness Framework

In this section, we apply the compactness framework theorem to the qua-

dratic flux system in region IV (A > 0). We prove the strong convergence of
approximate solution sequences constructed by the viscosity method, the Go-

dunov scheme, and the Lax Friedrichs scheme to the weak entropy solutions of

(2.5) with large initial data for all positive time. As a corollary, we obtain the

global existence of weak solutions to the Cauchy problem of (2.5) with large

data in L' .

We first verify L' apriori estimates for these approximate solution se-

quences. We then apply the compactness framework (Theorem 6.2) together

with Theorems 4.5.2, 4.5.3, and 4.5.6 on the existence of regular entropies. To

this end, the method of invariant regions will be used for the viscosity approxi-

mate sequence. In the case of the finite difference approximations, it is necessary

to establish such apriori estimates for general Riemann problem solutions to (2.5)

which are the building blocks of these difference schemes. We remark that the

Riemann problem for (2.5) has not been solved by purely analytical methods

before. Here we use the viscosity method to obtain existence of solutions to the

Riemann problem on arbitrary compact sets in the (x, t)-plane. At the same

time, we obtain the desired L' apriori estimates.

7.1 Convergence of the Viscosity Method
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Consider the Cauchy problem

OU + 8i,(dC(U)) = 0,

U(x, 0) = UO(x),

C(U) = (au buv + uv'),

(7.1) A > 0.

Using the convexity properties of the Rj curves or the explicit form of wj,

we obtain

Proposition 7.1.1. Consider the quadratic flux system. (2.5). Assume

that we are in region IV, i.e., A > 0. Then for any pair of constants,

c1 < 0 < c2 , nclC2 and n C1c2 n ik, with Ik as defined in Proposi-

tion 5.1.1, are convex invariant regions for the parabolic systems with

viscosity associated with (2.5).

Using Proposition 7.1.1, we obtain an L' ° apriori bound for viscosity ap-

proximate solutions U'.

Proposition 7.1.2. Consider the Cauchy problem (7.1) with Cauchy

data Uo E Ik, and its associated viscosity approximation {U'},>O.

Suppose that there is a constant U such that Uo- U E L2(R)fL-(R).

Then, for any e > 0, UE(x, t) is well-defined for all (x, t) and moreover,

IU(X,t)l < IIUO1LOO

Combining Proposition 7.1.2, Theorem 6.2, and Theorem 4.5.6,

we obtain

Theorem 7.1.3. Consider the Cauchy problem (7.1) with Cauchy

data Uo E 1 k, and its associated viscosity approximation {Ue}>O.

Suppose that A > 0. Suppose that there is a constant U such that

U0 - 0 E L 2(R) n L-(R). Then, as e --+ 0+, there exists a subse-

quence of U'(x, t) that converges a.e. (x, t) to a global weak solution

of the hyperbolic system (7.1).
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7.2 Convergence of Finite Difference Schemes

The Godunov and the Lax-Friedrichs schemes use the solutions of the Rie-

mann problem as their building blocks. In the case of the quadratic flux system

(2.5), explicit constructions of the Riemann problem solution prove to be ex-

tremely complicated. And the Riemann problem has never been solved before

by pure analytical methods. In order to prove the convergence of these finite dif-

ference schemes for the quadratic flux system with arbitrary data in L', we first

establish the existence of solutions for Riemann solutions and their L' apriori

bounds. To this end, we apply the viscosity method studied in Subsection 7.1.

Proposition 7.2.1. Consider the Riemann problem for (2.5):

atU + 9=(dC(U)) = 0,

(7.2) C(U) au3+ bu 2 v +uv 2), a 5l + b2,
2 3

with

(7.3) U(O' X) = UL, X < 0,

UR, X> 0.

Here, UL, UR E 'k are constants. Suppose that A > 0. Let II C

{ (x,t) I x E R, t > 0 } be a compact set. Then there exists a weak

solution to the Riemann problem (7.2) on the domain II.

The proof of Proposition 7.2.1 makes use of the finiteness of propagation

speed for solutions of (7.2) and (7.3) and of Theorem 7.1.3. The invariant

regions for the viscosity approximate solutions are convex. Thus, the L' bound

that the Riemann solutions inherit from the viscosity method are preserved

during the averaging processes in the intermediate steps in the finite difference

approximations.

Proposition 7.2.2. Consider the Cauchy problem (7.1) with Cauchy

data Uo E Ik for the quadratic flux system. Assume that Uo E LO.

Let {Ut}t>o be a sequence of approximate solutions to (7.1) generated
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by the Lax-Friedrichs scheme or the Godunov scheme. Then {Ut}t>o

is well-defined and IUt(x,t) :5 IIUoIIcL.

We obtain, after combining the above propositions with Theorem 4.5.6 and

the analysis in Section 6,

Theorem 7.2.3. Consider the Cauchy problem (7.1) for the quadratic

flux system with Cauchy data Uo E Zk. Assume that Uo E L'. Let

{Uet >o be a sequence of approximate solutions to (7.1) generated by

the Lax-Friedrichs scheme or the Godunov scheme. Then, as t e 0+,

there exists a subsequence of {Ut}t>o that converges to a global weak

solution of(7.1) a.e. in (x,t).

Remark. Our method yields the same convergence and existence theorems for

another nonstrictly hyperbolic system (a special case of such system was studied

in [Rb]): (1.1) with F = (au2 +V(v), uv)T, a > 1, for all even regular, superlinear

function V(v) satisfying p'(v)v > 0 and p"(v)v > 0 when v 0 0.
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